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APPROXIMATION FOR RADIANT ENERGY TRANSPORT IN 

NONGRAY, NONSCATTERING GASES 

by R. W. Patch 

Lewis Research Center 

SUMMARY 

Radiant heat transfer is the most important mode of energy transfer in many high- 
temperature gases and plasmas; thus, it is necessary to be able to estimate its magni- 
tude with confidence. In cases where the temperature varies appreciably over a photon 
mean free path, a transport analysis is generally required. When a plasma has a com- 
plex spectrum, such an analysis can be unduly time consuming even with a high-speed 
digital computer unless approximations are made. 

An approximation for  integrated intensity in nongray, nonscattering gases is pre- 
sented that uses a new mean absorption coefficient in the gray-gas transport equation. 
This absorption coefficient is called an "effective absorption coefficient. I t  The approxi- 
mation was tested by calculating the integrated intensities by exact and by approximate 
methods for 39 cases. The integrated intensities calculated by the effective absorption 
coefficient approximation had e r ro r s  of only -25 to +28 percent, which demonstrated the 
superiority of this approximation over a similar approximation using the Planck mean 
absorption coefficient. Despite certain restrictions on the form of the spectral absorp- 
tion coefficient, the effective absorption coefficient approximation is expected to .be use- 
ful for  most problems of nonscattering plasmas in local thermodynamic equilibrium 
(LTE) even where large temperature and pressure differences and inhomogeneities are 
present. 

INTRODUCTION 

In very-high-temperature propulsion devices such as gaseous nuclear rockets, the 

There are two general methods of analyzing 
dominant mechanism of heat transfer is radiant energy exchange between volumes of 
plasma and between plasma and the wall. 
such heat transfer: transport analysis and the diffusion approximation. An introduction 
to these two methods is contained in reference 1. 



The term "transport analysis" generally refers to a method of calculating radiant 
flux density by considering conditions at other points in space besides the point at which 
the radiant flux density is desired. In this report, transport analysis refers to single or 
multiple use of the transport equation (eq. (131) of ref. 1 or  some modification of it) to 
calculate integrated intensity in some particular direction in space from the point where 
the radiant flux density is desired. This calculation is repeated for  other directions, 
and an integration over solid angle is performed to obtain the radiant flux density. If no 
approximations are made, transport analysis gives the correct value of radiant f lux  den- 
sity. 

The usual diffusion approximation is really an approximate transport analysis in 
which the radiant flux density is inversely proportional to the Rosseland mean absorption 
coefficient and directly proportional to the temperature gradient at the point where the 
radiant flux density is desired (ref. 1). 
plicity, but it is not applicable when temperature varies appreciably in a photon mean 
free path as it may far from the center of the core of a gaseous nuclear rocket. 

The gray-gas transport equation is merely the monochromatic transport equation 
(eq. (131) of ref. 1) integrated over all wave numbers with the assumption that the spec- 
tral (or monochromatic) absorption coefficient is independent of wave number. 
gray-gas transport equation is, in general, rigorously applicable only to a gray gas o r  
to a gas that is optically thin at all important wave numbers (important wave numbers 
are those within about one order of magnitude of the wave number of the maximum spe- 
cific intensity of the Planck function). 

For other cases, the monochromatic transport equation is customarily applied at a 
sufficiently large number of wave numbers to enable calculation of integrated intensity by 
numerical quadrature. The radiant flux density is then obtained by integrating the inte- 
grated intensity over all solid angles. If the absorption coefficient has an intricate de- 
pendence on wave number and the problem does not involve slab geometry, calculation of 
radiant flux density by this method may be too time consuming even with a high-speed 
digital computer. For a uranium plasma, this difficulty can be appreciated as more than 
9000 spectral lines have been observed in a uranium arc.  For this and other reasons, 
radiant heat transfer far from the center of the core of a gaseous nuclear rocket has not 
been analyzed with any confidence. 

in nongray gases of any optical thickness have been made by a number of investigators. 
Stewart (ref. 2) has obtained a solution for slab-geometry steady-state problems where 
the spectral absorption coefficient can be factored into a part that is dependent on tem- 
perature and density and a part that is dependent on wave number. Grant (ref. 3) has 
obtained an approximation by dividing the spectrum into wave-number (or frequency) 
groups and by dividing the spectral absorption coefficient into absorption coefficient 

This approximation cannot be equaled for sim- 

The 

Attempts to find satisfactory approximations for calculating radiant energy transport 
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groups. Unfortunately, the latter approximation is only valid when the spectral absorp- 
tion coefficient is independent of position. Sampson (ref. 4) has obtained an approxima- 
tion for  slab-geometry problems that gives radiant flux densities and their divergences 
that are "nearly always within a factor of 2 of the correct values. '' This approximation 
gives exact values of these quantities for three classes of problems: (1) an optically 
thick gas where the diffusion approximation is applicable, (2) a gas that is optically thin 
at all important wave numbers, and (3) a gray gas. All three methods lack either gener- 
ality o r  accuracy. Viskanta (ref. 5) and Campbell and Nelson (ref. 6) used flux-weighted 
mean absorption coefficients that require calculation of spectral fluxes in order to evalu- 
ate them. 

obtained from the gray-gas transport equation by using therein an effective absorption 
coefficient averaged over the spectrum once and for all. The use of the effective ab- 
sorption coefficient in the gray-gas transport equation is expected to give a satisfactory 
approximation to integrated intensity for most cases involving a nonscattering gas in 
local thermodynamic equilibrium and possessing spectral lines, continua, o r  both. The 
effective absorption coefficient gives exact values of integrated intensity for five classes 
of problems. The effective absorption coefficient approximation was successfully ap- 
plied to calculate integrated intensity for 39 cases, 33 of which did not belong to the five 
classes. 

In this report, a new approximation is presented in which the integrated intensity is 

SYMBOLS 

A 

ha 

g a 

aP1 

aV 

aRo 

a- V 

B 

2 area, cm 

perturbation in spectral linear absorption coefficient, cm-' 

effective linear absorption coefficient, cm-' 

gray linear absorption coefficient, cm" 

Planck mean linear absorption coefficient, cm-l 

Rosseland mean linear absorption coefficient, cm-l 

spectral (or monochromatic) linear absorption coefficient at photon energy V, 
cm-l 

cm-l  
spectral (or monochromatic) linear absorption coefficient at wave number V, 

integrated Planck function (called integrated blackbody intensity in ref. l), 
W/( cm 2, (steradian) 

Planck (or blackbody) function, W/(cm)(steradian) 
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collision half-width of Lorentz line (line with a dispersion contour), cm" 

average collision half-width of Lorentz lines, cm-' 

velocity of light in a vacuum, cm/sec 

power radiated by spontaneous emission, W/(cm )(steradian) 

radiant f lux  density, W/cm 

component of 

cumulative distribution 

inverse function of f 

Planck constant, (J)(sec) 

integrated intensity, W/(cm )(steradian) 

specific intensity, W/(cm)(steradian) 

line strength parameter 

Boltzmann constant, J P K  

distance from point P to wall  (fig. l), cm 

parameter in series expansion of Q 

unit vector normal to dA (fig. 1) 
2 probability parameter, cm 

pressure, atm 

fraction of Planck function between ?7 and infinite ?7 

integral in denominator of effective absorption coefficient for narrow wave-number 

2 

2 

2 in the direction of n', W/cm 

2 

-1 group, cm 

random number 

distance along ray (fig. l), cm 

integrated linear absorption coefficient of spectral line, cm-' 

average integrated linear absorption coefficient of spectral lines, cme2 

temperature, OK 

distance - o r  temperature-dependent factor of spectral linear absorption coefficient 

dimensionless photon energy 

square of V 
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wave-number-dependent factor of spectral linear absorption coefficient, cm" 

perturbation in w, cm" 

constant term in wave-number-dependent factor of spectral linear absorption 
coefficient, cm-l  

mole fraction 

component of S in direction n' (fig. l), cm 

dummy variable 

integral in numerator of effective absorption coefficient for narrow wave- 

angle between ray and direction n' (fig. l), rad 

wave number, cm-' 

difference of two wave numbers, cm-l  

-2 number group, cm 

Stefan-Boltzmann constant, W/(cm 2 0  )( K) 4 

effective optical depth 

gray optical depth 

spectral (or monochromatic) optical depth 

local conditions in gas (temperature and pressure or, if more than one gas, 
partial pressures of the different gases) 

solid angle (fig. l), steradians 

Subscripts: 

a gas a 

approx approximate 

b gas b 

d gas d 

e gas e 

i 

j 

k 

1 

line spectral line 

isothermal, homogeneous, and constant pressure 

alternate subscript for origin group or  gas 

alternate subscript for origin group or  gas 

alternate subscript for origin group or gas 
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m 

m+ 1 

max 

min 

n 

0 

0 

r 

U 

V 

W 

a 

wave-number group, minimum wave number in wave-number group m, o r  mini- 
mum photon energy in wave-number group m 

maximum wave number in wave-number group m o r  maximum photon energy in 
wave-number group m 

maximum value 

minimum value 

component in direction n' (fig. 1) 

s = o  
center of spectral line 

origin group, species, o r  gas 

number of origin groups o r  gases 

alternate subscript for origin group o r  gas 

wall 

number of wave-number groups 

ANALY S I S 

The derivation of the effective absorption coefficient for  a single gas o r  plasma, to- 
gether with refinements for large temperature ratios and for inhomogeneous mixtures, 
is contained in this section. The effective absorption coefficient is derived initially for 
use in the gray-gas transport equation in order to express the integrated intensity for a 
homogeneous, isothermal, isobaric, nongray gas. A hypothesis is then made that allows 
the use of this equation as an approximation to the integrated intensity for a gas with any 
kind of gradients. 

This hypothesis has two principal defects, one of which causes appreciable e r ro r s  
for large temperature ratios and the other causes e r ro r s  for  inhomogeneous mixtures. 
The first defect is largely remedied by dividing the spectrum into wave-number groups, 
with a modified effective absorption coefficient and modified gray-gas transport equation 
for each group. The second defect is largely remedied by dividing the spectral absorp- 
tion coefficient into origin groups according to the origin of the spectra and by assuming 
no correlation between the spectra of different origin groups. This division requires the 
assignment of an effective absorption coefficient to each origin group. 

black wall at finite temperature. 
The foregoing approximations and hypothesis are extended to take into account a 
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Assumptions and Restrictions 

The assumptions utilized in the following derivations are listed herein for  conven- 

(1) The term "gas" includes "plasma. 
(2) No scattering of radiation occurs. 
(3) The gas is in local thermodynamic equilibrium, that is, the composition, degree 

ience. 

of molecular excitation, and velocity distribution at any point correspond to thermo- . 

dynamic equilibrium at some temperature, but the specific intensities do not have to 
correspond to the Planck function at that temperature. 

(4) The gas is nonrelativistic. 
(5) Changes in the state of the gas are slow enough that the time of flight of photons 

may be neglected. 
(6) Doppler shift in the spectrum may be neglected. When narrow spectral lines are 

present, this is a more stringent requirement than (4) or  (5). 
(7) Any walls are black, that is, they do not reflect or  transmit light. 
(8) The ordinary index of refraction is 1. 
(9) There is no interaction between photons. 
(10) Only one photon interacts with a particle at any given time. 
(11) The molecules of the gas have random orientation in space. 

The analysis is neither limited to gases with only spectral lines o r  only continua, nor is 
it restricted as to optical thickness. 

Basic Relations 

Some fundamental relations are needed in subsequent sections and are given here. 
Let a7 be the spectral linear absorption coefficient of a gas, including the induced 
emission factor (ref. 7). If S is the distance along a ray from the point P (fig. l), 
then the spectral optical depth of S relative to P is 

The Planck function is given by 



Here h is the Planck constant, c is the velocity of light, V is the wave number, k is 
the Boltzmann constant, and T is the temperature. 

at L toward P is obtained by integration of equation (116) of Chandrasekhar (ref. 1) 
with appropriate boundary conditions. 

The value of the specific intensity $ at point P in the direction from the wall 

This is the monochromatic transport equation. The quantity By is the Planck function 
for the gas temperature, whereas BN 

wave numbers 

is the PIanck function for the wall temperature. v, w 
The integrated intensity I at point P is found by integrating equation (3) over all 

According to equation (4), the contribution to I at point P due to the gas along an ele- 
ment of ray dS is 

co -T;;(S) 
dI =l BT(S)e aG(S)dV dS (5) 

For a gray gas the spectral linear absorption coefficient including the induced emis- 
sion factor (ref. 7) is independent of wave number and is designated a 
sponding gray optical depth at S is 

The corre- 
g ' 

Hence, for  a gray gas, equation (4) becomes 

- 7g(s) -7g(L) 
I =LL B(S)e ag(S)dS + Bwe (7) 

where B is the integrated Planck function for the gas temperature, and Bw is the inte- 
grated Planck function for the wall temperature. According to equation (7), the contribu- 
tion to I at point P due to the gas along an element of ray dS is 

-Tg(S) -Ls ag(S')dS' 
dI = B(S)e ag(S)dS = B(S)e ag(S)dS 
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Effective Absorption Coefficient for Single Gas 

In this section, the effective absorption coefficient is derived for an isothermal, iso- 
baric, single gas or  homogeneous mixture, and its mathematical behavior is discussed. 
A hypothesis is made that permits its application to gases with any kinds of gradients. 

Homogeneous, -. isothermal, isobaric, nongray gases. - In order to use equations of 
the form of equations (7) and (8) for a homogeneous, isothermal, isobaric, nongray gas, 
an effective absorption coefficient a, must be found to use in place of a Specifically, g ' 

where the subscript i has been added to S to indicate that the gas is homogeneous, iso- 
thermal, and isobaric. The effective absorption coefficient a, must take whatever form 
is necessary so that equation (9) is valid for any homogeneous, isothermal, isobaric gas. 
For a given wave number, a- and BT are  independent of Si; thus equating equations 
(5) and (9) results in 

V 

Integrating equation (10) with respect to Si from 0 to Si' gives 

-a S" -l "' ae (S;)dS; 
- l* BTe ' d F + B = - B e  + B  

Cancelling the two B's, dropping the double primes in equation (ll), and dividing equa- 
tion (10) by equation (11) yield 

For  a homogeneous, isothermal, isobaric, gray o r  nongray gas and a cold wall at L, 
equation (9) can be integrated to give 
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where the effective optical depth T~ is defined by 

Substituting equation (12) into equation (14) and noting that the numerator in equation (12) 
is just the negative of the derivative of the denominator with respect to Si give 

B 
- a d  

Te(Si) = In 
’dV 

The effective optical depth T~ is always measured from the point P where the inte- 
grated intensity and radiant f lux  density are desired. 

Behavior of a, for a homogeneous, isothermal, isobaric gas. - The variation of 

ae as Si varies is relatively simple. As Si approaches 0, it is clear from equa- 
tion (12) that ae approaches the Planck mean absorption coefficient aP1 given by 

a P l = B  - l  J m  BNaN v v  dF 

A s  Si approaches infinity, a, approaches the smallest value of a? in the spectrum. 
For intermediate values of Si, the function aF which results in a maximum value of a, 
with aP1 held constant can be shown to be the constant value apl. Hence a e - a ~ l  
always. 

The variation of a, with Si has a physical significance for  a nongray gas. When 
Si is very small, virtually all the radiation emitted by gas along dSi will reach point P 
(fig. 1). The appropriate mean absorption coefficient for use in the gray-gas transport 
equation for such optically thin cases is known to be apl (ref. 4) because there is no 
measurable self-absorption, that is, the gas does not absorb its own radiation to any 
extent. 

is large, then radiation emitted by gas along dSi will 
be strongly self-absorbed before it reaches point P; thus, only a small fraction of the 
radiation emitted along dSi gets to P. All photons emitted along dSi, regardless of 

If the gas is gray and if T 
g 
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wave number, wil l  have the same probability of getting to P, namely, exp(--r ). Equa- 
tion (7), which contains exp(--r ) in its first term, then gives the correct integrated in- 
tensity at P. 

If, on the other hand, the gas is nongray, the dependence of the emission of the gas on 
av must be considered. If equation (119) in reference 1 is used, the Kirchhoff law may 
be expressed as Ev= avBv where EN is the power per unit volume per unit solid angle 
per unit wave number radiated by spontaneous emission. In addition to the dependence of 
Eg on Bg Eg is large at those wave numbers where av is large. 
radiation from a nongray gas by the same gas can therefore be termed "preferential 
self-absorption" because for  a given path length the gas will absorb a larger fraction of 
its own radiation than of radiation from a blackbody at its temperature. 

For an optically thick, nongray gas, the contribution to the integrated intensity at P 
by gas along dSi far from P is smaller than would be calculated if apl were used in 
equation (7) or (13). For a homogeneous, isothermal, isobaric, nongray gas, this effect 
due to preferential self-absorption is allowed for properly by using a, in equation (13) 
instead of aP1 because ae is weighted properly to account for preferential self- 
absorption. 

factored into a product w(V)t(S), the concept of preferential self-absorption is valid. 
The degree of preferential self-absorption (or, equivalently, how much less a, is than 
apl) would be expected to depend on the effective optical depth -re rather than S. 

The hypothesis is made here that -re can be used as an approximate index of the de- 
gree of preferential self-absorption in any gas of a single species whether or not a7 
can be exactly factored into a product w(V)t(S) and whether o r  not temperature and pres- 
sure are constant. The basis for this hypothesis is that the spectra of an actual gas at 
moderately different temperatures and pressures a re  not markedly different from one 
another except in magnitude; thus, in a practical problem aV does approximately factor 
into a product w(V)t(S). 
whose value relative to apl is merely a measure of the degree of preferential self- 
absorption in the gas. 

is assumed to be the same as the value of a, for  an isothermal, isobaric gas having the 
same effective optical depth (same degree of preferential self-absorption) and same 
pressure and temperature as at S in the gas with gradients. This assumption may be 
called the equal-effective-optical-depth hypothesis. Before expressing this hypothesis 
mathematically, the quantity Si is redefined as the distance along a ray in an isothermal, 
isobaric gas having temperature and pressure the same as at S and having such a value 
that the effective optical depths -re in the gas with gradients and in the isothermal, iso- 
baric gas are the same. Then a, for a gas with gradients is given by the expression 

g 
g 

V 

The absorption of 

Nongray gases with gradients. - In cases where az can be approximately or  exactly 

This hypothesis is used below in finding an expression for ae, 

The value of a, may be computed if the value of a, at S in a gas with gradients 
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for the associated isothermal, isobaric gas. 

where + stands for the temperature and pressure at S in the gas with gradients and, 
of course, everywhere in the associated isothermal, isobaric gas. 

The effective optical depth for a gas with gradients is defined by 

which is analogous to equation (14). The effective optical depth for an isothermal, iso- 
baric gas of depth Si with the same pressure and temperature as at S in a gas with 
gradients is, according to equation (15), 

The definition of Si given previous to equation (17) may then be expressed mathemati- 
cally by equating equations (18) and (19). 

In general Si is not equal to S. Solving equation (20) for Si(S) and then equation (17) 
for ae(S) is a time consuming procedure by any method. This procedure may be avoided 
by noting that, for a given value of S, Si and T~ are uniquely related as shown by the 
right-hand side of equation (20). Hence a, may be regarded as a function of +(S) and 

thus, differentiating the left-hand side of equation (20) gives 

12 
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and the quantity Si no longer enters explicitly into the calculation of Equation (21) 
may be integrated readily by numerical methods to get T ~ ( S )  if ae[$(S), T ~ ]  is available 
in a form such as a table. This integration is started by using the boundary condition 
T ~ = O  at S=O. 

may be tabulated once and for  all in a three- 
dimensional table with arguments of pressure p, T, and T~ because a, depends only 
on p, T, and T ~ .  Such a table may be constructed by selecting p, T, and a number of 
values of Si. The quantities ae and T~ are calculated from equations (17) and (19), 
respectively, for each value of Si, and the results are interpolated to find a, at the de- 
sired values of T~ for the table. This procedure is then repeated for other values of 
p and T. 

effective transport equation for a gas with o r  without temperature and pressure gradients 
and with a cold wall at L, namely, 

For a given gas, values of ae $(S), T [ el 

The previous considerations make it possible to generalize equation (13) to give the 

When I must be evaluated a sizable number of times for the same gas and when that 
gas possesses a complex spectrum, it is faster to tabulate a, $(S), T once and for  all 
and then to solve equations (21) and (22) once for each I than to evaluate the double in- 
tegral in the exact equation (4) once for each I. This advantage becomes clearer if it is 
considered that for a plasma with, say, 9000 spectral lines the integral with respect to S 
in equation (4) would probably have to be evaluated by numerical methods at 40 000 or  
more different wave numbers so that the integral with respect to wave number could be 
evaluated by numerical methods with reasonable accuracy. This procedure would have 
to be followed for each I if the exact equation (4) were used. 

Exact classes of problems. - Equation (22) has already been shown to be exact for 
(1) isothermal, isobaric, single gases and homogeneous mixtures and is shown in the 
next two paragraphs to be exact for  (2) gray o r  (3) optically thin gases with o r  without 
temperature o r  pressure gradients and with a cold, black wall behind them. 

equation (22) and utilizing equation (6) gives equation (7) except for the last term, which 
is appreciable only if the wall is not cold. Since equation (7) is exact, it follows that 
equation (22) is exact for gray gases with a cold, black wall behind them. 

For a gas that is optically thin at all wave numbers, that is, agS << 1, a, = apl. If 
this substitution is made and the exponential is expanded in a power series, equation (22) 

II el 

In the case of a gray gas, equation (17) gives ae = a Substituting this equality into g ' 
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becomes 

I = lL B(S) [1 - J s  apl(St)dSt + . . 
0 

Because agS << 1 at all wave numbers, 

so all but the first term of the power series may be neglected, giving 

I = lL B(S)apl(S)dS (25) 

Some manipulation of exact equation (4) is necessary to show that it is identical to equa- 
tion (25) for an optically thin gas. If the wall is cold, the last term of equation (4) may 
be dropped. Setting the exponential equal to 1 in equation (4), reversing the order of in- 
tegration, and utilizing equation (16) gives equation (25). Hence, equation (22) is exact 
for  a gas that is optically thin at all wave numbers and has a cold, black wall  behind it. 

Refinement by Using Wave-N urn ber Groups 

Error due to Planck function shift. - In problems involving large maximum-to- 
minimum temperature ratios, nongray gas, and spectral optical depths of order of mag- 
nitude 1 or more, an appreciable e r ro r  is frequently present in equation (22) because of 
the shift of the curve of BF against V to larger values of V as temperature increases. 
This e r ror  is not evident from a cursory inspection of equation (22) because the depen- 
dence on the Planckfunction Bp is hidden in the evaluation of ae (eq. (17)). The e r ro r  
can be demonstrated, but the derivation is long. The e r ro r  is principally due to the inte- 
grand of the exponential of equation (22) being calculated with values of ae determined 
with Planck functions corresponding to temperatures at S' rather than at S. 

eral equations analogous to equation (22, but with each applicable to a particular wave- 
number range. Thus, every important wave number is included in one of the wave- 
number ranges, which will hereafter be called tlwave-number groups. ? (  The value of I 
may be obtained by simply adding the several equations. There is a precedent (ref. 3) 
for such a procedure. From the derivation that follows, it will become evident that when 

Introduction of wave-number groups. - The e r ro r  may be minimized by writing sev- 

14 



this procedure is carried to the extreme of having an infinite number of equations for an 
infinite number of very narrow wave-number groups, the value of I obtained is always 
exact. 

The group intensity & of the mth wave-number group is defined as all intensity 
with wave numbers between Vm and Vm+l, and with the help of equation (3) & is given 
exactly by 

where m under the integral signs means to integrate from Vm to Fm+l. 
If the same derivation is followed as for equation (17), except that 

wherever I was  used, the group effective absorption coefficient is found to be 
is used 

where an equal-effective-optical-depth hypothesis is required for each group. Thus, for 
the same value of S, values of S. are generally different for different groups. 

function is defined by 

1, m 
Several other group quantities result from such a derivation. The group Planck 

The group effective optical depth T is given by e, m 

The group effective transport equation for a gas with o r  without gradients and with a 
cold wall at L is 
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e, In 
d7 Bme 

The integrated intensity may be obtained by summation of equation (30) over all a! 

groups. 

a! 

m=l 

Exact classes of problem. .. - Equation (30) is exact for the following two additional 
classes of problem besides the three classes mentioned subsequent to equation (22). The 
first additional class of problem is the class where the elementary diffusion approxima- 
tion (ref. 1) is applicable and where the wave-number group is narrow enough that the 
variation of BF between T' and ?m+l may be neglected. This exactness is proven 
in appendix A where it is also shown that the same radiant flux density is obtained either 
by integrating equation (30) or  from the diffusion approximation. In the second additional 
class of problems where equation (30) is exact, aF must be of the form 

for 7 between ym and Vm+l, and the wave-number group must again be narrow 
enough that the variation of BF between Fm and Vm+l may be neglected. When these 
two conditions are satisfied, the exactness of equation (30) is proven in appendix B (eq. 
(B11)) for cases with or  without temperature or  pressure gradients. 

Refinement by Using Origin Groups 

Erro r  due to aF not factoring. - The underlying assumption in the application of 
~ ~ ~~ 

equation (30) to general problems involving temperature and pressure gradients is that 
a2 may be factored approximately into the form given in equation (32). This assumption 
may break down in two types of problems: 
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(1) Problems involving inhomogeneous mixtures 
(2) Problems involving large ratios of maximum to minimum temperature together 

with a gas possessing spectra of widely different excitation potentials 
Introduction of origin groups. - Two spectral absorption coefficients a- and 

v, j 
a- are said in this report to be uncorrelated within wave-number group m if 

v 7  k 

f BV(aV, j - aPl, m, j)(aV, k - aPl, m, k )dV= 0 
m 

(33) 

are group Planck mean absorption coefficients P1, m, j and aPl, m, k The quantities a 
for a- and a- respectively, and are defined by v, j v, k7 

where v canbe j o r  k. 

tween agts for different gases of a mixture or, for that matter, between the low- 
excitation-potential and high-excitation-potential contributions to ay of a single gas. 
This lack of correlation suggests the approach for refining equation (30). In many cases, 
a spectrum for which equation (32) is not even approximate may be so divided into u 
origin groups r = 1, 2, 3, . . . u that there is little or  no correlation between the 
spectral absorption coefficients of any two origin groups, but the spectral absorption 
coefficient a- of each origin group approximately factors the way ag does in equa- v, 
tion (32). When origin groups are used, the spectral absorption coefficient ay of the 
gas or mixture is the sum of all the ag, r. For an example of the use of origin groups, 
if an inhomogeneous mixture contains three gases a, b, and c, and only gas c has spec- 
tra of widely different excitation potentials, then origin group 1 might correspond to all 
the spectrum of gas a, origin group 2 to all the spectrum of gas b, origin group 3 to the 
low-excitation-potential spectrum of gas c, and origin group 4 to the high-excitation- 
potential spectrum of gas c. 

If no correlation is assumed to exist between the a- of different origin groups, 
v 7  r 

then there should be little or no preferential absorption of, say, radiation of origin 
group 1 by origin group 2. Consequently, a should be replaced by the sum of the 
a of the various origin groups, and the value of each a should depend on 
the group effective optical depth T for that origin group and no other. This de- 
pendence is obtained by defining the effective absorption coefficient of the rth origin 
group in the mth wave-number group by 

If spectra a re  sufficiently complex, then little or no correlation generally exists be- 

e, m 
e, m, 1 e, m, r 

e, m7 
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Here rc/ now stands for temperature and partial pressures of all chemical species at S 

(which, in general, all affect the width of spectral lines of origin group r). The quantity 
S. is defined as the distance along a ray in an isothermal, isobaric gas having only 
the absorption coefficient a- and having temperature and pressure the same as at S, 
such that the effective optical depths T of the rth origin group in the mth wave- 
number group in the isothermal, isobaric gas and in the gas with gradients a r e  the same. 
In this definition both gases are assumed to have the same line widths. 

1, m, r 
v, r 

e, m, r 

The group effective optical depth 7 is given by e, m, I' 

The total group effective optical depth 7 is e, m 

The group effective transport equation for  a gas with or  without gradients and with a 
cold wall at L is no different from equation (30) except for  the evaluation of T ~ ,  m. 

It can be shown that the use of origin groups as outlined is equivalent to the assumption 
that radiation belonging to one origin group is absorbed by another origin group in the 
same proportion as radiation from a blackbody would be. 

Exact classes of problems. - Equations (37) and (38) are either exact o r  an excellent 
approximation for six classes of problems. 

The first class is a homogeneous mixture of any number of slightly nongray (slightly 
colored), isobaric gases with or  without temperature gradients and with a cold, black 
wall behind it. The spectral absorption coefficients of the various gases are assumed to 
be uncorrelated and independent of position. For such a mixture, aN of each gas r v, r 
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may be represented by 

is the average value of a- in the wave-number group, and A a  is any where a 
small wave-number-dependent perturbation. If the wave-number group is narrow enough 
that the variation of Bp between Fm and YmCl may be neglected, then both the exact 
group transport equation obtained by integrating equation (3) assuming a cold wall  

r g , m , r  v, r 

- 7- 

I =  Bg(Tp)e dTgdV 

and the effective group transport equation (eq. (38)) may be expanded in series involving 
integrals of powers of AaJa 
m value. It is shown in appendix C that the two series expansions so obtained a r e  iden- 
tical through third order in Aar/a  which proves that equations (37) and (38) a r e  an 
excellent approximation for this class of problem. 

The second class is an inhomogeneous, isothermal mixture of any number of slightly 
nongray gases that may possess pressure gradients and have a cold, black wall  behind 
them. The spectral absorption coefficients of the various gases a r e  assumed to be un- 
correlated. For such a mixture, a- v, 

where a is the sum of all a with the same g,m g,m g , m , r  

g," 

of each gas may be represented by 

where w 
small perturbation depending only on wave number and having an average value of 0 in 
the wave-number group, and t is a factor depending only on S and due to concen- 
tration variation. Assuming the wave-number group may be any width, both the exact 
and the effective group transport equations may be expanded in a series involving inte- 
grals of powers of AwJw It is shown in appendix D that the two ser ies  expan- 
sions thus obtained are identical through third order in Awr/w 
equations (37) and (38) are an excellent approximation for  this class of problem. 

thermal, isobaric mixture of any number u of gases with lines possessing Lorentz con- 
tours and with no continua, may be calculated by the Mayer-Goody statistical model 
(refs. 7 to 9) if the wave numbers of the lines have a random distribution, i f  the spectra 
of the u gases are uncorrelated, and if the integrated linear absorption coefficients gr 
of all lines of each gas meet two requirements. The integrated linear absorption coeffi- 
cient of a line of gas r is defined by 

is a constant for the particular gas and wave number group, Awr is any 
g , m , r  

m, r 

g, m, r' 
which shows that g, m, r' 

The integrated o r  group intensity for class 3, consisting of a homogeneous, iso- 
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zr = a- dV v, line 

where ar,line is the linear absorption coefficient due to only the line being considered. 
The f i r s t  requirement on gr is that the probability Pr &r of Sr of a line of gas r 
being between gr and gr i- &r is 

N 

- 1  - z p r  
PrdSr=-e - @r 

'r 
(43) 

where isr is the average integrated linear absorption coefficient (in wits of, say, cm-2) 
for  all lines of gas r. The second requirement is that there is no correlation between 
the values of gr and the wave numbers of the respective lines. The gases may be 
present in any proportions. If the half-widths of the lines and the mean line spacings of 
all the gases are the same, then the Mayer-Goody statistical model and equations (37) 
and (38) give the same integrated o r  group intensities for  all depths L of the gases, as- 
suming the gases are bounded by a cold, black wall (fig. 1). Hence equations (37) and 
(38) are as good an approximation as the Mayer-Goody statistical model for this class. 

The fourth class of problems may be called "independent, strong line" problems. 
If two o r  more gases have very narrow spectral lines and no continua and if the depth L 
of the gases is neither too small nor too large, the centers of the lines may be optically 
thick, but the wings of the lines may be optically thin and cover most of the spectrum. 
Because the coincidence of optically thick line centers of different gases is quite rare  for  
gases with uncorrelated spectra, the integrated intensity of the mixture should be the 
sum of the integrated intensities due to each gas, or,  from equation (30), 

where the mixture may possess temperature and pressure gradients. However, if the 

e , m , r  
and equation (44) becomes 
wings of the lines are optically thin and cover most of the spectrum, then 7 << 1,  

r=l 

Equation (45) may be compared to equations (37) and (38) if it is assumed that 
T << 1; thus, equations (37) and (38) give 
e,m 
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This equation is equivalent to equation (45). Thus, equations (37) and (38) give correct 
values of 

mixtures of gases such that the mixture is optically thin at all important wave numbers. 
For both classes, the mixtures may be inhomogeneous and have temperature and pres- 
sure gradients. For these classes, equations (37) and (38) give exact values of &. 

for  independent, strong line problems. 
The last two of the six classes of problems are (5) mixtures of gray gases and (6) 

Allowance for a Black Wall 

Extension of approximations. - Extension of the approximations given in the pre- 
ceding three subsections to problems where the wall is black but not cold is not difficult. 
If a wave-number group is narrow enough that the variations of the Planck functions of 

and if a- is given by both the gas and the wal l  can be neglected between Vm and Vm+l 
equation (32), then it is shown in appendix B (eq. (B10)) that the group intensity is given 
exactly by 

v 

even in the presence of temperature and pressure gradients. Here B is the group 
Planck function for  the wall  temperature. When the spectrum is not divided into origin 
groups, equation (47) may also be written 

m,w 

Substitution of equation (37) into the second term of equation (47) reveals that the use of 
origin groups is equivalent to assuming the multiplication property of transmissions 
(ref. 10). This property has been observed experimentally for  molecular band spectra 

21 



of different gases (ref. 10). 
Exact classes of problems. - Equation (47) is exact fo r  four classes of problems: 

(1) the class previously discussed for which aT is given by equation (32), (2) gray gases 
o r  mixtures of gray gases, no matter how wide the wave-number group is made, (3) 
gases o r  mixtures that are optically thin at all important wave numbers, irrespective of 
how wide the wave-number group is, and (4) the trivial case of an isothermal, isobaric 
gas with a black wall at the same temperature as the gas and with any width of wave- 
number group. 

Hypothesis for  other problems. - The hypothesis is made here that equation (47) may 
be applied as an approximation to cases not falling within the four classes of problems 
previously given. Support for  this hypothesis is provided by specific cases in the follow- 
ing section. 

RESULTS AND DISCUSSION 

Behavior of the  Effective Absorption Coefficient 

The general behavior of the effective absorption coefficient has been discussed in the 
section Behavior of a, for  a homogeneous, isothermal, isobaric gas (p. 10). Here a 

~~ ~~~~ ~ ~~ 

specific example, profile A, is considered. Profile A is a spectral absorption coeffi- 
cient consisting of the step function shown in figure 2 and tabulated in table I. The be- 
havior of ae for profile A is shown for an isothermal, isobaric gas in figure 3 together 
with the behaviors of the Planck mean absorption coefficient apl and the Rosseland 
mean absorption coefficient aRo (ref. 1) defined by 

[* 1 dBT - - dV 

(49) 

All three mean absorption coefficients always lie between the minimum and the maximum 
spectral absorption coefficients av, min and av, respectively. Where the spectral 
absorption coefficient and the pressure and temperature do not vary with S, as in the 
present case, aP1 and aRo a re  independent of S, but a, is dependent on S. The ef- 
fective absorption coefficient a, decreased from apl to a?, min as S varied from 
zero to infinity. 
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The effect of temperature on ae is shown in figure 4 for  an isothermal, isobaric 
gas. The dependence of ae on temperature was caused by the shift of the Planck function 
as shown in figure 2. 

shown in figure 4. The effective optical depth did not depend linearly on S but increased 
more slowly at high values of S due to preferential self-absorption. 

The effective optical depth for an isothermal, isobaric gas with profile A is also 

Methods of Evaluating Integrated Intensity 

Integrated intensity was calculated for  specific cases by several approximate meth- 

(1) The '?aplff method was evaluation of the gray-gas group transport equation using 

is equation (34) without the 

ods. 

in place of a k ( S ) ,  T ~ ,  m] and the group Planck mean absorption coefficient apl, 
a 
subscripts v. This procedure may be considered a first approximation to equation (48) 
because it gives exact values of Im for  gases that are optically thin at  all important 
wave numbers. 

(2) The "one-origin-group a,'? method was the evaluation of equation (48) and thus 
is equivalent to doing a problem without introducing origin groups. 

(3) The ' 'two-origin-group a,' ' method was the evaluation of equation (47) using 
7 from equation (37) with u = 2. 
Variations of these methods involved the use of different numbers of wave-number groups 
For comparison, integrated intensity was also calculated exactly by equation (4). All 
calculations were done on the Lewis IBM 7094 computer. 

e,! [ .  (S'), T: , m] in equation (48). The equation for apl, 
e ,m 

e ,m 

Specific Cases with One Gas 

Thirty-six specific isobaric cases involving eight different aF profiles were se- 
lected to test the accuracy of the one-origin-group ae method. Thirty of these cases 
did not belong to any of the five classes of problems for  which the one-origin-group a, 
method is exact. The eight av profiles are given in figures 2 and 5 to 8 and are tabu- 
lated in table I. Profiles B and C (fig. 5) a r e  constant half-width Lorentz lines, profileD 
(fig. 6) is a step function, and profiles E and F (fig. 6) are linear variations. Profile G 
(fig. 7) is a step function selected to cause a very large e r r o r  in I when only one wave- 
number group is used. Profile H (fig. 8) is a Lorentz line whose width varies as T- 
as would be expected in many practical, isobaric problems. The arbitrarily assumed 
temperature distributions are designated 1 to 8 in figure 9. A black wall was located at 
L = 50 centimeters in all cases. 

1/2 
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The integrated intensities calculated by the exact, one-wave-number-group apl, and 
one-wave-number-group, one-origin-group ae methods are given in tables 11 and III for 
profiles A to F. The ratios of approximate to exact integrated intensities are plotted in 
figure 10 for  profile B. For profiles A to F the aP1 method gave e r rors  in I of -43 to 
455 percent, whereas the one-origin-group ae method demonstrated its superiority, at 
least for  Lorentz lines, by giving e r rors  in I of only -25 to 24 percent. 

The calculated values of I for  profile G are given in table IV. Both the ap1 and 
the one-origin-group ae methods with one wave-number group resulted in very large 
e r rors  in I. The difficulty was remedied by using two wave-number groups. Because 
the gas was gray in both groups, the e r rors  vanished for both approximations as shown 
in table IV. 

The values of I for  profile H a re  also given in table N. Because of the large ratio 
of maximum to minimum temperature, one wave-number group for  the one-origin-group 
a, method gave an e r ro r  of 35 percent. When three wave-number groups were used, this 
e r ro r  was reduced to 27 percent. The aP1 method was totally unsatisfactory with either 
one o r  three wave-number groups. 

Specific Cases with Gas Mixtures 

Three specific, isobaric cases with mixtures involving five hypothetical gases were 
selected to test the accuracy of the two-origin-group ae method. None of the cases be- 
longed to any of the six classes of problems for which the two-origin-group a, method 
is exact o r  can be shown analytically to be an excellent approximation. 

The five gases included one completely transparent gas c and four gases a, b, d, 
and e with Lorentz lines. Each of the latter gases was assumed to have 20 lines with 
various integrated absorption coefficients and random wave numbers of the line centers, 
as discussed in appendix E. Consequently, the spectra of gases a, b, d, and e were es- 
sentially uncorrelated. In mixtures, the contribution of gas r (a, b, d, o r  e) to ar was 
taken equal to the mole fraction Xr times the value of aN 

v , r  

shown at the right of figure 11. A cold, black wall was located at  50 centimeters, and 
temperature distribution 8 (fig. 9) was chosen. The aT of the mixture is shown in fig- 
ure 11. The calculated values of I a re  given in table V. 

The case referred to as binary mixture B involved gases d and e in place of gases a 
and b, respectively, so that the air of the mixture (not shown) was different. Other- 
wise binary mixture B was the same as binary mixture A. The calculated values of I 
are given in table V. 

for  pure gas r. 
The case referred to as binary mixture A involved gases a and b distributed as 

The case named ternary mixture was obtained by inserting a completely transparent 
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gas c between gases a and b of binary mixture A as shown at the right of figure 12. The 
curves in figures 11 and 12 were plotted with the Lewis CACOMP digital computer pro- 
gram and a CALCOMP plotter. Insertion of the transparent gas increased the depth of 
the gas to 150 centimeters, to which point the cold, black wall was relocated. Tempera- 
ture distribution 9 was chosen because it had the same maximum and minimum tempera- 
tures as for the binary mixtures. The av of the mixture is shown in figure 12. The 
calculated values of I are given in table V. Despite first impressions conveyed by fig- 
ures 11 and 12, binary mixture A and the ternary mixture had appreciable self-absorption 
(T? not negligible compared to 1) at most wave numbers. 

A review of the accuracy of the various approximate methods for  calculating I (ta- 
ble V) for the three mixtures shows that the apl method with one o r  three wave-number 
groups was in some cases unsatisfactory. Calculations by the one-origin-group a, and 
the three-origin-group ae methods were performed with three wave-number groups. 
In these calculations, one origin group gave e r rors  between -49 and 19 percent, while 
two origin groups gave e r rors  between -17 and 28 percent, demonstrating the superiority 
of the two-origin-group ae method for  inhomogeneous mixtures containing two semi- 
opaque gases. 

RECOMMENDATIONS FOR PRACTICAL APPLICATIONS 

The approximations developed in this report are well suited to calculations with a 
high-speed digital computer but not well suited to hand calculations. Because the effec- 
tive absorption coefficient approximation introduces e r rors  of the order of &28 percent in 
the calculation of integrated intensity and hence radiant flux density, the numerical meth- 
ods used in practical calculations can be crude without introducing serious additional 
error .  The proposed procedure for  practical calculations of radiant flux density is out- 
lined in the following sections. 

Selection of Wave-Number Groups 

Once the gases and their spectra involved in a given problem o r  series of problems 
have been determined, the next step is to select the wave-number groups. Because 
equation (47) is exact for  gray gases, e r rors  in I will be minimized if the spectrum is 
so divided that each wave-number group is as nearly gray as possible. A very conserva- 
tive approach would be to divide the spectrum so that no Planck function corresponding to 
any temperature of the problem varied appreciably in any wave-number group. When a 
large number of closely related cases are to be calculated, a better approach would be 
to calculate a few cases exactly by applying equation (4) to the entire spectrum and then 
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to determine by trial and e r r o r  how many wave-number groups would be needed if equa- 
tions (31) and (47) are used as an approximation. 

Selection of Origin Groups 

For problems involving chemical reactions, at least one origin group generally wil l  
be required for each chemical species possessing a spectrum in a given wave-number 
group. 

Calculation of ae, ,,-,, r and 'Ce, m, r 

The effective absorption coefficients a can be calculated once and for  all for  
a series of problems involving the same chemical species. The computer can then store 
them as multivariant polynomial fits o r  in multiargument tables. If one origin group is 
assumed per species, it will be necessary to have at most u + 2 arguments (T, m, r, 
and partial pressures of all u chemical species). However, in many cases fewer argu- 
ments will suffice because the various particles that cause significant collision broaden- 

may be ing of spectral lines often produce the same line shape and because a e, m, r/Pr 
stored instead of a 
a 
is an average collision half-width. 

table of a, values, a number of values of Si are substituted into equations (17) and (19) 
to get ae and T ~ .  Similarly, in constructing a table of a 
values of S. may be substituted into equation (35) and the right-hand side of equa- 
tion (36). A better procedure is to nondimensionalize equations (35) and (36) by defining 
dimensionless photon energies by 

e,lfl,l" 

itself (pr is the partial pressure of species r). Thus, e , m , r  often may be stored with the three arguments T ,  T ~ , ~ ,  r, and bc where bc e, m, r/Pr 

It was mentioned in the section Nongray Gases with Gradients that in constructing a 

values, a number of 
e ,  m, 1: 

1 ,m, r  

From equations (2), (28), (36), and (50), 
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7 =In e , m , r  

where a has been rewritten a 
to integrate from Vm to Vm+l. Evaluation of the integral in the numerator can be 
rapidly carried out using the expressions for  Q(V) given in appendix F. From equations 

for  clarity, and m under the integral sign means 
'3; r v, r 

(21, (351, and (50), 

dV 

For spectra involving many lines, use of statistical models (refs. 7 to 9) may be 
preferable to use of equations (51) and (52). 

Evaluation of Integrated Intensity 

If one origin group is assumed per species, integrated intensity Im may be evalu- 
ated at  point P for a ray in a given direction (fig. 1) in an inhomogeneous mixture of u 
gases by integrating by numerical methods u first-order differential equations and a 
single integral. The u first-order differential equations are given by 

( r = l ,  2, 3, . . ., u) (53) 

which is equivalent to the left-hand side of equation (36). The single integral is given in 
equation (47), in which Bm may be evaluated by the method in appendix F. 
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I ,. 

Evaluation of Radiant Heat-Flux Density 

The component Fn of the heat-flux density at the point P in the direction n' nor- 
mal to the infinitesimal area dA (fig. 1) may be calculated from the relation 

where dS2 is an element of solid angle with the ray at its center, 8 is the angle between 
the ray and the direction n', and the integration is performed over 4s steradians. 

i- 

CONCLU SlON S 

1. The effective absorption coefficient approximation simplifies radiant-heat trans- 
port calculations for  cases with complicated spectra that are optically thick at some im- 
portant wave numbers. Integration over all important wave numbers is performed once 
and for  all for  all gas mixtures containing the same chemical species. 

2. To obtain accurate integrated intensities where widely different temperatures oc- 
cur in a problem, it may be necessary to divide the spectrum into wave-number groups, 
with an effective absorption coefficient and an effective transport equation for each 
group. 

3. The use of origin groups in the calculation of the effective absorption coefficient 
is generally necessary to obtain accurate integrated intensities for  inhomogeneous mix- 
tures and may be desirable where spectra of the same gas have widely different excita- 
tion potentials. For valid results, spectra of the different origin groups must have no 
appreciable correlation with each other, and the spectral absorption coefficient of each 
origin group must factor approximately into wave-number-dependent and position- 
dependent functions. 

origin groups were used as appropriate, the effective absorption coefficient approxima- 
tion gave integrated intensities with e r rors  of -25 to 28 percent for 39 cases. In con- 
trast, use of Planck mean absorption coefficients in the gray-gas transport equations for 
the same number of wave-number groups gave integrated intensities with e r rors  of -43 
to 455 percent. 

4. When one to three wave-number groups were used as required and one o r  two 
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5. If hot, gray o r  black radiation falls on a cold gas with narrow, isolated spectral 
lines, the fraction of the radiation transmitted may be underestimated seriously by using 
the Planck mean absorption coefficient. The e r ro r  can be reduced substantially by using 
the effective absorption coefficient approximation. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 16, 1967, 
122-28-02-17-22. 
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APPENDIX A 

DERIVATION OF GROUP DIFFUSION EQUATION FROM 

EFFECTIVE GROU P TRANS PORT EQUATION 

It is shown in this appendix that if the wave-number group is narrow enough and if the 
usual assumptions of the elementary diffusion approximation (ref. 1) are made, then the 
effective group transport equation gives exact values of Im. The group diffusion equation 
is derived from the equation for  Im and is found to be the same as derived from the 
literature. 

EXACTNESS OF EFFECTIVE GROUP TRANSPORT EQUATION 

Consider a gas where the Planck function does not vary appreciably in a few photon 
mean free paths a t  any wave number. Then the elementary diffusion approximation 
(ref. 1) should, in general, be applicable. Although it is not obvious from the usual der- 
ivation (ref. l), this approximation entails assuming that ay is independent of tempera- 
ture and position. This assumption is reasonable because when the approximation is ap- 
plicable all significant contributions to the radiant flux density come from gas within a 
few photon mean free paths of the point in question, and the Planck function (and there- 
fore temperature) must not vary appreciably in this region. Hence, in the following der- 
ivation, aV is assumed to be independent of temperature and position. 

can be neglected, then according to equation (27), a 
If a wave-number group is chosen narrow enough that the variation of. By with V 

is given by 
e ,m 

- a d .  
dV v i ,m awe V 

- a - 
e,m 

Substitution of equation (Al) into equation (29) and differentiation of the result with re- 
spect to S give dSi,,/dS = 1. By using the boundary condition s. 1,m 
is found that Si,m = S for  all values of S, and equation (Al) becomes 

= 0 a t  S = 0, it 
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II 

Let 

Thus, 

qm l e - a '  dF  

If the gas is assumed to be infinite, equation (30) becomes 

00 

a ds 
I,= Bme e ,m 

o r  

where qm(0) is the value of qm fo r  S = 0, and AVm is Vm+l - Vm. From equa- 
tion (A3), 

Combining equations (A5) and (A6) gives 

which is exact because it may also be obtained from equation (3) by setting L = 00, 

dropping the last term, integrating over the wave-number group, and neglecting the 
variation of BF between Vm and Vm+l. 
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DERIVATION OF GROUP DIFFUSION EQUATION 

The group diffusion equation may be obtained from equation (A7) if Bm is expanded 
in a Taylor ser ies  about S = 0. 

Bm = Bm(0) + S - + . . . (2)G 
and only the first two terms a re  retained. Combining equations (A7) and (A8) and 
changing the order of integration give 

This equation simplifies to 

From Stewart and Pyatt (ref. l l ) ,  the local Rosseland mean absorption coefficient 

'RO, m for  the wave-number interval AVm is defined by 

where the variation of dBp/dT in this wave-number interval has been neglected. Com- 
bining equations (AlO) and (All)  gives 

d 

The gradient of T is assumed to be in the direction o r  -n . The group heat flux 
density is (fig. 1) 

-c 

Fm = - Im cos 0 dnn'  (A1 3) 
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where, from equation (Al2), 

Im = Bm(0) + ‘Os e (2) 
a ~ ~ ,  m 0 

Here x is the component of S in the direction c. Combining equations (Al3) and (A14) 
gives 

- Fm - - - 
3 a ~ o ,  m 

This is simply the group diffusion equation, which can also be derived from the spectral 
diffusion equation (ref. 1) by integrating it over the wave-number interval AVm with the 
assumption that (dBG/dx)O is constant in this interval. 
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APPENDIX B 

DERIVATION OF EFFECTIVE GROUP TRANSPORT EQUATION FROM EXACT 

GROUP TRANSPORT EQUATION FOR A CLASS OF PROBLEMS 

In this appendix the effective group transport equation is derived from the exact 
group transport equation for  a gas whose av can be separated into wave-number- 
dependent and position-dependent factors (eq. (32)). Temperature and pressure gradients 
may be present. The gas is bounded by a black wall a t  S = L, which may be at any tem- 
perature. The wave-number group must be narrow enough that the variation of the Planck 
functions of the gas and of the wall for  wave numbers between Vm and Dm+l may be 
neglected. 

Equation (26) is the exact group transport equation. If the variation of Bv and 
the order of integration is changed, B- 

equation (26) becomes 
between Vm and Vm+l is neglected and v, w 

The next step is to find a simple expression for  the product av(S)Si,m(S). The 

If the varlation of Bp between Vm and Vm+l is neglected, equation (29) becomes 
quantity S (S) is defined by equation (29). 

i, m. 

Equation (27) defines ae,m. If the variation of Bv between Vm and Vm+l is ne- 
glected, equation (27) becomes 

Equation (B3) is then substituted into equation (B2), equation (32) is substituted into the 
result, and the equation thus obtained is differentiated with respect to S. 
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The solution of the differential equation (B4) with the -boundary condition S. = 0 at 
s = o  is 1,m 

Combining equations (32) and (B5) gives 

ag(S)Si, ,(S) =/' ag(S')dS' = T?(S) 
0 

This equation gives the desired simple expression for aF(S)Si, m(S). 
Substituting equation (B6) into equation (Bl) gives 

If the variation of Bv between Vm and Vm+l is neglected, the right-hand side of 
equation (29) gives 

A V ~  Jm 

If equation (B8) is multiplied by equation (B3), the result is 

Equations (B8) and (B9) are then substituted into equation (B7) with the result 
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The derivation of equation (BlO) has shown that it is an exact equation for the class of 
problem considered. If the wall is 'cold (B negligible), equation (B10) becomes m,w 

Equations (B10) and (B11) are effective group transport equations. 
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APPENDIX C 

SERIES EXPANSIONS OF TWO GROUP TRANSPORT EQUATIONS FOR 

HOMOGENEOUS MIXTURE OF NONGRAY GASES WITH OR . \ 

WITHOUT TEMPERATURE GRADIENTS 

In this appendix, series expansions of the exact group transport equation and of the 
effective group transport equation (eq. (38) with Te,m given by eq. (37)) a r e  carried 
out and compared in order to help establish the validity of the effective group transport 
equation with more than one origin group. 

slightly nongray (slightly colored) isobaric gases in any proportions and with o r  without 
temperature gradients. The gases a re  assumed to have uncorrelated spectra and are 
numbered 1, 2, . . . , u. The two expansions give the group intensity at S = 0 (point P 
in fig. 1). The distance L along the ray to a cold, black wall can be any value including 
infinity. The optical depth of the gas along the full length of the ray is arbitrary. The 
wave-number group considered is assumed to be narrow enough that the variation of the 
Planck function Bg with wave number can be neglected for the range of wave numbers 
included in the group. 

The spectral absorption coefficient of each gas of the mth wave-number group is 
assumed to be independent of position along the ray and may be expressed as 

The class of problem considered is restricted to a homogeneous mixture of u 

where r designates the particular gas. The gray absorption coefficient a is a 
constant for each wave-number group for each gas, so the perturbation Aar  is some 
function of wave number. Integrating equation (Cl) over the range of wave numbers in- 
cluded in the wave-number group m gives 

g , m , r  

or 

If a is given, a may be so selected that v, g , m , r  
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Subtracting equation 

Aar 
a g ,m, r  

l a v , r d v = a g , m , r  *vm r = l ,  2, . . ., u 

<<1 

(C3) from equation (C2) gives 

r = 1 ,  2, . .'., u 

for  all wave numbers in the wave-number group. The total spectral absorption coeffi- 
. cient is given by 

U 

"v= air, r 
r=l 

Equations (Cl) to (C6) apply in both the series expansions which follow. 

EXPANSION OF THE EXACT GROUP TRANSPORT EQUATION 

From equations (1) and (26), the exact group transport equation with a cold, black 
wall is 

-a$ 
= f f L B v e  av dS dV 

Im m O  

Because it was assumed that the variation of Br with wave number could be neglected, 
equation (C7) may be rewritten 

If equations (Cl) and (C6) a re  used, equation (C8) becomes 
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Define a total gray absorption coefficient for wave-number group m by 

Also, define a gray optical depth by 

Combining equations (C9), (ClO), and (C11) and expanding the hal terms of the exponen- 
tial in powers of ha /a give 

1 g,m 

where T (L) is the value of T at  S = L, and indicates a product. 
g7m g ,m 

Appropriate expressions will  now be found to express the assumption that the spec- 
t ra  of the u gases are uncorrelated. The perturbation har at a given wave number 
may be associated with a hypothetical photon of the same wave number, the photon being 
a member of a hypothetical population r of photons with a constant frequency function 
between Vm and Vm+l and a zero frequency function outside these limits. In other 
words, the probability of a photon having a wave number in an infinitesimal range dV 
’of fixed width is independent of wave number between Vm and Vm+l and is zero out- 
side this range. If there are u statistically independent populations of photons with this 
type of frequency function, then the following averages exist (ref. 12). 
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4 Aaj  A% dV = 0 

L A a j  hak ha2 dV = 0 

Equation (C13) defines "u gases with uncorrelated spectra. I t  It is a good assumption for  
atomic and ionic spectra consisting of many lines by themselves o r  superimposed on con- 
tinua which do not have strong wave-number dependence. 

products in (C12) a re  zero, with the result that 
Equations (C4) and (C13) reveal that many of the terms that occur in evaluating 

U 1 

where terms higher than third order in Aar/a 
Equation (C14) is the truncated series expansion for the group intensity a t  point P based 
on the exact group transport equation. 

have been dropped as insignificant. 
g ,m 

EXPANSION OF THE EFFECTIVE GROUP TRANS PORT EQUATION 

From equations (37) and (38), the effective group transport equation may be written 
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Consequently, evaluation of equation (C15) requires two preliminary steps: the evaluation 
of d7 

wave number within the wave-number group is neglected, equation (35) becomes 

(from which d7 is obtained) and the evaluation of exp(-T e, m, r). 
is needed to evaluate d7 e, m, r' If the variation of Bv with 
e ,m e , m , r  

The value of a 
e , m , r  

Substitution of I 

JdS = 1. If the boundary condition S spect to S givc ai,,, 
used, it is found that Si, m, = S for all values of S. From equations (C16) and (36), 

Lation (C16) into equation (36) and differentiation of the result with re- 
= O  at S = O  is 

i , m , r  

Let the denominator of equation (C17) be designated by 

Substituting equation (Cl) into equation (C18) gives 

(C 1 7) 

A gray optical depth fo r  gas r may be defined by 

Substituting equation (C20) into equation (C19) and expanding the second exponential in a 
power series give 
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where the second term in the series has been omitted because it is zero according to 
equation -(C4). 

Similarly, the integral in the numerator of equation (C17) is dksignated by 

Substituting equation (Cl) into equation (C22) gives 

Expanding the second exponential in a power ser ies  and evaluating the result give 

where the second term in the series has been omitted because it is zero according to 
equation (C4). 

Combining equations (C17), (C21), and (C24) gives 
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I 

have been neglected. 
g , m , r  

where terms of higher than third order in Aar/a  

(C17) and the right-hand side of equation (36), 
is useful to evaluate, ~XP(-T ). From equation 

e , m , r  e , m , r  A different form of d7 

-7 
AVme 

This equation can also be written 

Combining equations (C24) and (C27) and truncating the series at third order in 
%lag, m, r give 

Integrating both sides from the origin of the ray out to S and simplifying the resulting 
expression give 

It is now possible to evaluate equation (C15). First equation (C25) is substituted into 
the differential form of equation (37) with the result 
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Substituting equations (C29) and (C30) into equation (C15) and using equations (C10) and 
(C11) give 

Evaluating equation (C31) and retaining only third- o r  lower-order terms in Aar/a 
gives equation (C14). Hence, through third order in Aa+ 
transport equaticin and the effective group transport equation give the same value for &. 

g,m 
both the exact group 

g, " 
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APPENDIX D 

SERIES EXPANSIONS OF TWO GROUP TRANSPORT EQUATIONS FOR 

INHOMOGENEOUS, ISOTHERMAL MIXTURE OF NONGRAY GASES 

In this appendix, just as in appendix C, series expansions of the exact group trans- 
given by 

e , m  
port equation and of the effective group transport equation (eq. (38) with T 

eq. (37)) are carried out and compared in order to help establish the validity of the effec- 
tive group transport equation with more than one origin group. 

The class of problems considered is different than in appendix C. It is restricted to 
an isothermal mixture of u slightly nongray gases in any proportions and mixed in a 
homogeneous or inhomogeneous manner. Pressure gradients may be present. The gases 
are assumed to have uncorrelated spectra and are numbered 1, 2, . . . , u. The two 
expansions give the group intensity at S = 0 (point P in fig. 1). The distance L along 
the ray  to a cold, black wall  can be any value. The optical depth of the gas along the full 
length of the ray is arbitrary. The wave-number group considered may be any width. 

may be expressed as 
It is assumed that the absorption coefficient of each gas in wave-number group m 

where t is a factor dependent only on S and due to concentration variation. In 
equation (Dl), 

m , r  

where w 
number. Multiplying equation (D2) by By and integrating over the wave-number group 
give 

is a constant, and Aw, is a small perturbation, dependent only on wave 
g , m , r  

I f w  is given, w may be 
m,  1 g , m , r  

so selected that 

B w  r = 1 ,  2, . . ., u 
m g , m , r  
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Subtracting equation 0 4 )  from equation (D3) gives 

l B p A w r d D . = O  r = 1 ,  2, . . ., u 

The condition that each gas be slightly nongray is specified by 

for  all wave numbers in wave-number group m. Equations (Dl) to (D6) apply in both 
the series expansions which follow. 

EXPANSION OF THE EXACT GROUP TRANSPORT EQUATION 

From equation (26), the exact group transport equation for  an isothermal gas with a 
cold, black wall is 

From equations (l), (Dl), and (D2), 

for  S = L by 
g, m 

Define a gray optical depth T 

Substituting equation (D9) into equation (D8) and expanding the second exponential give 
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(S)dSI3 + . . (D10) 
6 

Substituting equation (D10) into equation (D7) gives 

2 
H=/  m %Y [ - ."9m(L)fi[ - A W r L L  tm, r (S)dS + A  2 prlL tm,,(S)dS] 

r=l 

In a manner similar to that for equation.(C13), the lack of correlation of the spectra 
of the u gases is specified by 

LBc  Awj Awk Awl dV = 0 
k + Z  

Define a gray optical depth for gas r for  S = L by 

With the help of equations (D5), @12), and (D13), equation (D11) becomes 
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. r=l 

This equation is the desired expansion of the exact group transport equation. 

EXPAN SlON OF THE EFFECTIVE GROUP TRANSPORT EQUATION 

From equations (38) and (37), the effective group transport equation for an iso- 
thermal gas is 

From equations (35) and (36), 

By a derivation analogous to the derivation of equation (B5), 

for  all values of S. 
From equations (Dl), (D16), and (D17), 



-Wm, rJStm, r (S')dS' 

fB-w u m , r m , r  t e dVdS 

Integrating equation (D18) from S = 0 to L gives 

Substituting this equation into equation (D15), making use of equation (D2), expanding into 
a power series, and making use of equations (D5), (D9), and (D13) give equation (D14) 
through third order. Hence, through third order in Awr/w 
transport equation and the effective group transport equation give the same value for &. 

both the exact group 
g, m, r' 
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APPENDIX E 

SPECTRAL ABSORPTION COEFFICIENTS FOR GASES IN GAS MIXTURES 

The method of obtaihing the spectral absorption coefficients for  hypothetical gases 
a, b, d, and e in the gas mixtures is given herein as well as the spectral absorption co- 
efficients obtained. Each gas was assumed to have 20 spectral lines whose wave numbers 
and integrated intensities were given by the Mayer-Goody statistical model (refs. 7 to 9). 

WAVE NUMBERS OF LINE CENTERS 

For each gas the 20 lines were restricted to wave numbers between 0 and 400 000 re- 
ciprocal centimeters because the Planck function for  the maximum assumed temperature 
(40 000’ K) was negligible at larger wave numbers. The wave numbers Vo of the line 
centers were assumed to have random values as required by the Mayer-Goody statistical 
model. These values were selected by taking six-digit random numbers from the table in 
reference 13 and discarding numbers higher than 400 000. Rearranged in order of in- 
creasing wave number, these values are given in tables VI and VIIfor gases a, b, d, 
and e. 

INTEGRATED ABSORPTION COEFFICIENTS OF LINES 

The probability Pr dgr of the integrated linear absorption coefficient gr of a line 
of pure gas r being between sr and gr + ds” 
Let f(gJ be the cumulative distribution of g: (ref. 14). 

was assumed to be given by equation (43). 

The inverse function f - l  is defined by 

Hence, 

- 
(E 3) 

1 f -  (y) = -sr ln(1 - y) 

where y is a dummy variable. Let R be a member of a se t  of random numbers with 
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rectangular distribution between 0 and 1 and no numbers outside this range. Then values 
of gr with the probability distribution given by equation (43) may be found from the rela- 
tion (ref. 14) 

-1 N 

r Sr = f  (R) = -3 

Let J = gJgr. Then, equation (E4) becomes 

J = -h(l - 

h(l - R) 

R) 

Because of the rectangular distribution of R between 0 and 1, 1 - R can be replaced 
with R; thus equation (E5) becomes 

Values of J for the 80 lines were calculated from equation (E6) by taking 80 six-digit 
random numbers for R from the random-number table of reference 13 and are listed in 
tables VI and VII. 

collision half-width (ref. 7) was chosen as 750 reciprocal centimeters for all lines of all 
gases. The integrated linear absorption coefficient Sr, which is roughly an average 
value of gr for all lines of gas r, w a s  chosen as 838 reciprocal centimeters squared 
for each pure gas. 

Two other quantities were needed to specify the Lorentz lines in a pure gas. The 

SPECTRAL ABSORPTION COEFFICIENTS FOR PURE GASES 

The spectral absorption coefficients for pure gases a, b, d, and e were  calculated 
using the results from the preceding two sections. The spectral absorption coefficient 
a for pure gas a is the curve at S = 0 in figure 11, a is the curve at S = 50, 
while a- and a- a re  not shown but have the same general appearance as a and 
a- 

are 
essentially uncorrelated. 

'3, a v, b 
v,d v, e '3, a 

v, b' 
Because of the manner in which they were obtained, a;, a, a;, b, a;, d, and a- v, e 
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APPENDIX F 

GROUP PLANCK-FUNCTION COMPUTER SUBPROGRAM 

Near the end of this appendix is a listing of the group Planck-function subprogram 
written in FORTRAN IV for  the IBM 7094 digital computer. This subprogram was used 
in several of the programs used to calculate integrated intensity by different approxima- 
tions and should be useful to other investigators for  numerous applications. 

The group Planck function B, was defined by equation (28). Let 

By  dV 

B 
Q(7,T) = 

Then, 

where a is the Stefan-Boltzmann constant. It is readily shown that 

where V is given by equation (50). Hence, 

Bm(T) = 1. 8O5X10-l2 T4[&(Vm) - Q(Vm+l)] (F4) 

Expressions for  Q(V) have been given by Wiebelt (ref. 15) and a re  repeated. Let 
2 w = v .  

Q(V) = 1 - VW 0.051330 - V(0.019249 - V(0.0025665 - W[3.0554X10-5 [ 
- W(5. 6581X10-7 - 1. 1573X10-8 W)]})] V < 2 (F5) 
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The subprogram fo r  the group Planck function, based on equations (F4) to (F6), with 
the FORTRAN variable BLACK representing the group Planck function Bm follows: 

10 
11 

1 

FUNCT T O N  BLACK ( T I  
C W M O N  /B3/0MEGA 

FACTOR=l .4?RR/T 

V=FACTOR*flMEGA( I )  

D I Y E Y S I O U  O M E G A ( 2 l v Q U A D ( Z )  

DO 7 1 ~ 1 . 2  

IF 
I F ( V - h 0 . ) 2 v l l r  11 

V- 2 .  ) 1 v 10 v 19 

W A D (  I )=n. 
GO TD 7 
w = v * * 2  
(JlJADf I ) = l . - V * W * ( . 0 5 1 3 ~ O - V * (  .019749-V*1.0325h65-W*13.0554€-5-W* 

1 lS.h5RlE-7-1.1573E-R*W1l) ) 1 
GO TO 7 

SUM=O. 
WEXP= 1.  

I F 1  V*FLOATl  Y )-60.)514,4 

2 Z E X P = E X P l - V )  

no 4 ~ = i , 5  

5 WEXP=WEXP*ZEXP 
PRflD= F LOA T ( N 1 *V  
FUM=SUM+WEXP*( ( l P ~ 0 3 + 3 . ) * P R 0 3 + 6 . ) * P R o ~ + 6 . ~ / F L n A T ( N ) * * 4  

QUAD( I )=. 15399*SlJH 
4 CONTINUE 

7 COYTINIJE 
BLACK = 1 . R O 5 € - 1 2 * T * * 4 * ( Q U A D ( I  )-O(JAn(?) I 
R ETlJR N 
END 

The arguments are actually T, OMEGA (l), and OMEGA (2), although the last two a re  
in COMMON. OMEGA (1) is the wave number at the lower liinit of the group, and 
OMEGA (2) is the wave number at the upper limit. 

The program is accurate to within 0.00002 B. 
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TABLE I. - EQUATIONS OF SPECTRAL ABSORPTION 

COEFFICIENTS DESIGNATED A TO H 

Spectral absorption coeff iciefit 

aP 
Cm-1 

0 .10  
.02  

3 767 000 

(V - 60 830)2 + 18 840 000 

376 700 

(V - 60 830)2 + 188 400 
- 

0 .02  
.10 

6 . 5 7 4 ~ 1 0 - ~  'J+ 0.0052 

-6 .  574X1Om7 V +  0.1048 

- 

0 

2.00 
.02 

636.6 bc 

(r- 60 830)2 + b: 

where bc = 90 OOO/T1/2 

Range of wave number V for 
which expression is valid, 

0 < 'J< 60 830 
60 830 < V <  00 

- -  

~. I 
0 < 'J< 60 830 
60 830 < F< 03 

- -  
- 

O < ' J < W  

0 < V <  159 400 
159 400 < V <  03 

0 < v< 20 000 
2 0 0 0 0 - < v 9  I 
O < ' J < -  - -  

aProfiles are given in figs.  2 and 5 to 8. 
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TABLE II. - INTEGRATED INTENSITIES CALCULATED BY THREE METHODS FOR PROFILES A TO F WITH A COLD  WALL^ 

--- 
20 
15 

Method of calculation 1 

6. O5x1O5 
6 .44  
6.06 

t--+ Integrated intensity, Error from 

Temperature distribution 

4 

Integrated intensity, I E r ror  from 
I, I, I W/(cm2)(steradian) 1 $z::n:' I W/(cm')(steradian) 1 

Profile A 
I 

)ne wave-number groupb aP1 
h e  wave-number group, one 

origingroup ae 

bac t  

h e  wave-number groupb aP1 
)ne wave-number group, one 

origin group a, 

%act 

)ne wave-number groupb apl 
)ne wave-number group, one 

origin group a, 

kact 
me wave-number groupbb aP1 
h e  wave-number group, one 
origin group a, 

kact 
me wave-number groupbb aP1 
ae wave-number group, one 
origin group a, 

xact 
ne wave-number groupb 
ne wave-number group, one 

aP1 

origin group ae 

~ 

1.29x106 
1.32 
1. 15 

5. 91x105 

5 . 0 9 ~ 1 0 ~  
1.21x106 

2 . 2 3 ~ 1 0 ~  

1 . 9 6 ~ 1 0 ~  
1. 24X106 

1.08X106 
1.36 
1.29 

1.21x106 
1.45 
1.39 

1. 26X106 
1. 32X106 
9. 93x105 

aCold, black wall is at distance L along ray of 50 cm. 
bWave-number group extended 0 to 400 000 cm-'. 

--- 
2 

-11 

5 . 1 3 ~ 1 0 ~  
6.70 
5.73 

Profile B 

3. O3x1O5 

- 14 3.03 

Profile C 

--- 
455 
- 12 

Profile D 

--- 
2 1  
19 

1 . 1 8 ~ 1 0 ~  
5.62 
1.18 

5. ~ 3 x 1 0 ~  
6.70 
5.13 

--- 
5 

-2 1 

6. 35x105 
6.12 
6 .36  

I 

exact I, 
percent 

--- 
17 
0 

_ _ _  
6 
0 

I 

Integrated intensity. 
I, 

W/(cm2)(steradian) 

3. 3Ox1O5 
3 .90  
3.54 

1. ~ 9 x 1 0 ~  
2. 40 
1.57 

6. 28X104 
2 . 5 2 ~ 1 0 ~  
6. 26X104 

3 . 1 5 ~ 1 0 ~  
3.46 
2 .99  

3 . 0 8 ~ 1 0 ~  
3 . 1 1  
2 .96  

3 . 6 5 ~ 1 0 ~  
3 . 8 1  
3. I 9  

Error  f r c  
exact I 
percent 
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. .- 

1 

Integrated intensity, Er ror  from 
I, exact I, 

W/(cm 2 )(steradian) percent 

TABLE III. - INTEGRATED INTENSITIES CALCULATED BY THREE METHODS 

7 

Integrated intensity, Er ror  fron 
I, exact I, 

W/(cm2)(steradian) percent 

2.  63X106 
1 .76  
2 .22  

Exact 
h e  wave-number group 
3ne wave-number group, one 

b 
aPl 

origin group a, 

--- 
-33 
- 15 

Exact 
h e  wave-number group aP1 
h e  wave-number group, one 

b 

origin group a, 

4. 36X106 
2.49 
4.  18 

Exact 
h e  wave-number group 
h e  wave-number group, one 

b 
aPl 

origin group a, 

2. ~ 7 x 1 0 ~  
-4 7 . 8 0 ~  O4 

Exact 
h e  wave-number group aP1 
h e  wave-number group, one 

b 

origin group a, 

Exact 
h e  wave-number group 
]ne wave-number group, one 

b 
aP1 

origin group a, 

~~ 

Exact 
]ne wave-number group aP1 
h e  wave-number group, one 

b 

origin group ae 

3.91x106 --- 1. ~ 3 x 1 0 ~  
2 .60  1 -34 1 2 .45  

Profile D 

3 . 2 2 ~ 1 0 ~  
1.48 
1.83 3 . 0 4  -6 

Profile E 

3. 14x105 

1.84 3 . 0 0  

Profile F 

2. 72X106 --- 3. 65x1O5 --- 
1.70 1 -37 I 3.88 1 6  

aHot, black wall is at distance L along ray of 50 cm and is at same temperature as adjacent gas. 
bWave-number group extended 0 to 400 000 cm-'. 
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TABLE IV. - INTEGRATED INTENSITIES CALCULATED BY FIVE 

METHODS FOR PROFILES G AND H WITH A COLD  WALL^ 

[Temperature distribution designated 8 3 
Method of calculation I Integrated intensity, I Erro r  fron 

I, I W/(cm2)(steradian) 
I 

Profile G 
~~ 

Exact 
One wave-number group apl 
Two wave number groupsb aP1 
One wave-number group, one 

Two wave-number groups, one 

b 
C 

origin group ae 

origin group ae 

C 

Profile H 

Exact 
One wave-number group aP1 

Three wave-number groups apl 
One wave-number group, one 

d Three wave-number groups, 

b 

d 

origin group ae 

one origin group ae 

4. 17x105 

4 . 1 7 ~ 1 0 ~  
1 . 6 3 ~ 1 0 ~  

4. 17x1O5 

7. 53x1O1 

5 . 0 9 ~ 1 0 ~  

1. 24x1O5 

5 . 0 0 ~ 1 0 ~  

6. 88x1O4 

6 . 4 9 ~ 1 0 ~  

exact I, 
percent 

---- 
- 100 

0 
-96 

0 

---- 
88 1 

143 
35 

27 

aCold wall is at  distance L along ray of 50 cm. 
1 bWave-number group extended 0 to 400 000 cm- . 

%ave-number groups extended 0 to 20 000 and 20 000 to 

dWave-number groups extended 0 to 45 830, 45 830 to 75 830, and 
400 000 cm-'. 

75 830 to 400 000 cm-'. 
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TABLE V. - INTEGRATED INTENSITIES CALCULATED BY FIVE METHODS FOR BINARY 

MIXTURE A, BINARY M~XTURE B, AND TERNARY MIXTURE WITH A COLD  WALL^ 

2.59 

Method of calculation 

-5 

h a c t  
)ne wave-number group aP1 

rhree wave-number groups' apl 
rhree wave-number groups, one 

rhree wave-number groups, two 

b 

origin group a, 

origin group a, 

k a c t  
)ne wave-number group apl 

rhree wave-number groups' apl 
rhree wave-number groups, one 

rhree wave-number groups, two 

b 

origin group a, 

origin group a, 

-act 
)ne wave-number group apl 

rhree wave-number groups' aP1 
rhree wave-number groups, one 

rhree wave-number groups, two 

b 

origin group a, 

origin group ae 

8 

Integrated intensity, 
I, 

W/(cm2)(steradian) 

Temperature distribution 

9 

Error  from 
exact I, 
percent 

Binary mixture A 
~- 

2.7 1x1O5 --- 
1.93 1 -29 

3.32 
1.89 

23 
-30 

Binary mixture B 

1. 55x1O5 
7.75 

3.03 
1.84 

1.98 

--- 
40 1 

96 
19 

28 

Integrated intensity, 

Ternary mixture 

5. 68X105 
1.77 

6.48 
2.88 

4.69 

Er ro r  from 
exact I, 
percent 

--- 
-69 

14 
-49 

- 17 

aCold wall is a t  distance L along ray of 50 cm for  binary mixtures and 150 cm for  ternary mixture. 
bWave-number group extended 0 to 400 000 cm-'. 
%ave-number groups extended 0 to 100 000, 100 000 to 200 000, and 200 000 to 400 000 cm-'. 
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TABLE VI. - LINE POSITIONS AND LINE STRENGTH 

PARAMETERS FOR GASES a AND b O F  MIXTURES 

Gas a 

Line position 

'3b, 
c m - l  

9 994 
19 362 
37 438 
72 834 
90 324 

119 202 
123 356 
129 578 
131 880 
137 408 

150 498 
182 760 
206 455 
220 791 
308 420 

338 452 
343 178 
347 055 
355 507 
366 994 

J 

1.2022 
1.9862 
2.3076 

.3478 

.0792 

- 

1.5181 
.7789 
.8320 
.1995 
.1505 

.3421 

.7748 

.6532 
.4057 
. 1390 

.2008 

.0245 

.0956 

.9856 

.0218 

~ 

Line strengt 
parameter, 

- 

Gas b 

Line position 

$9 

cm-l  

33 606 
56 418 
73 998 
82 341 

125 624 

146 670 
159 466 
176 833 
177 817 
206 413 

214 598 
260 527 
274 945 
282 562 
285 207 

291 665 
309 732 
339 333 
388 435 
388 579 

. .  

Line strengt: 
parameter, 

J 

0.7986 
.2602 

2.8975 
.4347 
.4061 

3.1317 
.4395 

1.3123 
.8202 
,5250 

1.4836 
.5263 
.7483 

1.2592 
.4235 

2.2219 
.0092 

1.4360 
.5223 

2.0375 
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TABLE VII. - LINE POSITIONS AND LINE STRENGTH 

PARAMETERS FOR GASES d AND e OF MIXTURES 

Gas d 

Line position, 

vc17 

cm-l  

N 

5 499 
44 935 
83 586 
84 226 
91 882 

98 932 
100 973 
116 644 
118 050 
125 507 

128 079 
154 744 
186 333 
195 654 
235 237 

310 601 
321 790 
331 851 
359 631 
375 420 

Line strength 
parameter, 

J 

0.1767 
.5048 
.2458 

1.7403 
1.4745 

.4911 
3.2213 
1.1733 
1.4220 
1.1864 

1.1195 
3.2730 

.1222 
2.1874 

.7292 

.3628 
1.6439 
1.1472 
1.1099 
.9530 

N 

V 
0’ 

cm- l  

Gas e 

Line position, 

- 

69 134 
76 387 

104 551 
108 506 
128 839 

164 442 
195 023 
195 235 
217 783 
218 185 

218 264 
246 373 
272 675 
283 060 
306 927 

337 134 
374 029 
380 010 
385 080 
398 209 

&e strength 
parameter, 

J 

0.4401 
.0758 

3.0978 
.2534 
. 1772 

2.9064 
.7689 
.6671 

1.9388 
2.1993 

1.8557 
.3219 
.9993 
.8711 
.4269 

.6405 
1.5674 
.5573 

1.3798 
.9496 
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Figure 1. -Quantities and elements i n  the analysis of intensity and radiant flux 
density. 
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v, 
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Figure 2. - Spectral absorption coefficient designated profile A. Normalized 
Planck functions for four temperatures are given for reference. 
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Absorption 
coefficient 

8 16 24 32 40 48 56 
Distance along ray, S ,  cm 

Figure 3. - V a r i o u s  mean absorption coefficients for profile A, as well as min- 
imum and maximum spectral absorption coefficients. Temperature, 20 000" K. 

0 8 16 24 32 40 48 56 
Distance along ray, S, cm 

Figure 4. - Effective absorption coefficient and effective optical depth for profile 
A at four temperatures. 
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Figure 5. - Lorentz-l ine spectral absorption coefficients designated profi les B 
and C. Normalized Planck funct ion i s  given for reference and i s  for 25 OOO" K. 
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Figure 6. - Spectral absorption coefficients designated profi les D, E, and F. 
Normalized Planck funct ion i s  given for reference and i s  for  25 OOO" K. 
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Figure 7. - Spectral absorption coefficient designated profile G. Normalized 
Planck funct ions for two temperatures are given for reference. 
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Figure 8. - Variable-width Lorentz-l ine spectral absorption coefficient designated 
profile H. Normalized Planck funct ion is given for reference. 
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Figure 9. -Temperature distributions designated 1 th rough 9 
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Figure 10. - Ratios of approximate to exact integrated intensities for 
prof i le B. Range of temperature gradients correspond to tempera- 
t u r e  distr ibut ions 1 th rough 7; cold wall at distance L along 
ray of 50 centimeters. One wave-number group was used. 
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68 

Figure 12. - Spectral absorption coefficient of ternary mixture. Mole fractions of gases a, b, and c 
are given at r ight. Note that gas c i s  transparent. 
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